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Abstract 

The maximum-entropy method (MEM) can provide a 
high-resolution nuclear density distribution purely from 
experimental neutron diffraction data. The distribution 
expresses thermal smearing, which is caused by all kinds 
of thermal-vibration modes both harmonic and anhar- 
monic. If the effective one-particle potential (OPP) is 
assumed to describe thermal smearing of nuclei, the 
potential parameters can be determined by least-squares 
refinement of the nuclear density distribution. By this 
method, the OPP parameters of rutile (TiO2) are directly 
determined from the nuclear density distribution origin- 
ally derived by Sakata, Uno, Takata & Howard [J. Appl. 
Cryst. (1993), 26, 159-164]. In the rutile case, the x 
coordinate of the O atom located at (x, x, 0) has to be 
determined before the OPP parameters are analysed. The 
atomic position is defined as the position where the first- 
order moment of the nuclear density becomes zero. The 
obtained x coordinate is 0.30477, which shows excellent 
agreement with the previous study of Rietveld analysis 
by Howard, Sabine & Dickson [Acta Cryst. (1991), B47, 
462-468], i.e. 0.30478 (6). The higher-order moments of 
nuclear density are calculated in order to build an 
adequate OPP model. Among these values, none of the 
sixth order is significant and hence the OPP model up to 
fourth-order anharmonicity is employed. The potential 
parameters are refined by least-squares analysis using the 
above OPP model. For the Ti atom, nine OPP parameters 
(three harmonic and six fourth-order anharmonic) are 
determined with reliability factor R = 0.73%. For the O 
atom, twelve OPP parameters (three harmonic, three 
third- and six fourth-order anharmonic) are determined 
with R = 3.83%. The nuclear density of the O atom 
shows substantial skewness in rutile owing to the third- 
order anharmonicities. It is shown that the present 
method is a very powerful technique to determine the 
precise values for both harmonic and anharmonic 
potential parameters based on the OPP model in 
comparison with conventional structure analysis. 
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1. Introduction 

Sakata & Sato (1990) have proposed a new accurate 
structure analysis technique, that is, the maximum- 
entropy method (MEM). It is demonstrated that the 
MEM analysis of X-ray diffraction data is a very 
powerful method to visualize the detail of electron- 
density distribution without using a structural model. The 
number of examples in which the MEM has been 
successfully applied to obtain accurate electron-density 
distributions are rapidly increasing, e.g. Si (Sakata & 
Sato, 1990), CeO 2 (Sakata, Mori, Kumazawa, Takata & 
Toraya, 1990), TiO 2 (Sakata, Uno, Takata & Mori, 1992) 
and Mg (Kubota, Takata & Sakata, 1993) etc. When the 
MEM is applied to neutron diffraction data for a non- 
magnetic elastic scattering measurement, it can yield a 
high-resolution nuclear density distribution in the same 
way, e.g. Be (Takata, Sakata, Kumazawa, Larsen & 
Iversen, 1994), TiO 2 (rutile) (Sakata, Uno, Takata & 
Howard, 1993), TiO 2 (anatase) (Sakata, Uno, Takata, 
Takagi, Kumazawa & Howard, 1994) etc. In the neutron 
diffraction case, the distribution is equivalent to the 
atomic thermal smearing function (TSF), which is caused 
by all kinds of thermal-vibration modes of constituent 
atoms because the spatial breadth of nuclei can be 
neglected. One of the most convenient methods for 
describing the TSF is to assume that the atom is vibrated 
by a self-consistent molecular field, which is called the 
effective one-particle potential (OPP). By using the OPP 
model, it is, in principle, possible to determine the 
harmonic and anharmonic potential parameters by least- 
squares ref'mement of the nuclear-density distribution 
obtained by the MEM. This will give us an alternative 
method of determining thermal parameters. 

In conventional structure analysis, the anharmonic 
thermal parameters are included in temperature factors. 
According to Willis (1969), the TSF is defined as the 
Boltzman distribution of vibrational potential by using 
the OPP model and the temperature factor is a Fourier 
transformation of the TSF. This Fourier transformation 
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cannot be solved analytically and thus the approximation 
in which the TSF is expanded by the Taylor series had to 
be introduced. In the approximation, the anharmonic 
terms are regarded as a small perturbatio n, which may 
not be the case in a real crystal. In the present analysis, it 
is not necessary to calculate the temperature factor, since 
the analysis of potential parameters is carded out in real 
space. Therefore, the analysis is free from the limitation 
that comes from the approximation introduced to perform 
the Fourier transformation of TSF. 

In this work, the OPP parameters of rutile (TiO2) are 
directly determined from the MEM nuclear density 
distribution. This work is only the second example of 
such an analysis. The first example is the single-crystal 
neutron diffraction data of Be by Takata, Sakata, 
Kumazawa, Larsen & Iversen (1994). Although the 
principal idea of the potential parameter analysis is the 
same as in the Be case, the present work deals with a 
more general case. For example, the atomic position has 
to be evaluated from the nuclear-density distribution 
before analysing the potential parameters. In the Be case, 
the atomic position is fixed at a special position by 
symmetry requirements. Therefore, the detailed theo- 
retical background of analysis will be repeated in this 
paper. The MEM nuclear density distribution to be 
analysed in this work is obtained from the powder 
diffraction data. It is very unusual to carry out an analysis 
of anharmonic potential parameters with powder data. In 
the conventional method, severe correlations between 
potential parameters would prevent such an analysis 
being performed. This work shows that it is possible to 
obtain anharmonic potential parameters from powder 
data by the present method. 

2. Rutile structure and the MEM density maps 

The unit cell of rutile (TiO2) is shown in Fig. 1. The 
structure is tetragonal and the space group is P42/mnm 
(No. 136) 0 with lattice constants a = 4 . 5 9 4  and 
c = 2.959A at room temperature (Howard, Sabine & 
Dickson, 1991). In this structure, the Ti atom is located at 
position (0, 0, 0), which is the special position with mmm 

point-groupsymmetry and the O atom is located at 
position (x, x, 0) with mm2 point-group symmetry. In 
order to determine the potential parameters, the displace- 
ments of each atom are represented by the principal-axes 
system, u x, Uy and u z, of which the origin is the atomic 
position. The precision of the present analysis strongly 
depends on the accuracy of this origin. Therefore, it is 
important to know the precise atomic position of the O 
atom. In §3, the procedure to determine the atomic 
position from the MEM nuclear density distribution will 
be mentioned in detail. 

The nuclear density distributions of rutile at room 
temperature was originally obtained with 64 x 64 x 64 
pixels by Sakata, Uno, Takata & Howard (1993). The 
neutron powder diffraction data used in the MEM 
analysis has been analysed by the Rietveld method 
(Howard, Sabine & Dickson, 1991). The nuclear density 
is usually distributed within a limited space around the 
atomic position. There are a small number of pixels in 
such a tiny region. In order to analyse the higher-order 
anharmonic terms precisely, finer pixels are needed. 
Therefore, the MEM analysis was carried out again with 
128 x 128 x 128 pixels using the new computer pro- 
gram MEND, which has been developed for analysing 
neutron diffraction data with negative scattering length, 
such as for the Ti atom, and employs a new efficient 
algorithm, which is initially applied to the computer 
program MEED (Kumazawa, Kubota, Takata, Sakata & 
Ishibashi, 1993). This can analyse the X-ray diffraction 
data and the neutron diffraction data with positive 
scattering lengths only. By using MEND, a large 
computation, such as the 128 x 128 x 128 pixels case, 
can be performed without any difficulties. In the present 
calculation, the supercomputer FACOM VP2600 at 
Nagoya University Computation Center was used. The 
total computing CPU time was 11 s for 32 iteration 
cycles. The obtained MEM nuclear-density maps are 
shown in Figs. 2(a) and (b), which are (110) and (002) 
planes, respectively. These maps are essentially the same 
as the previous MEM calculation except for the 
resolution of the pixels. 

u © o  

~y a ~ Ti 

Fig. 1. The futile structure and the principal axes reprcscnting atomic 
displacemcnts for the Ti and 0 atoms. 

3. Theory 

As mentioned in §1, the procedure for potential analysis 
has to be extended. In order to clarify each procedure, a 
flow chart is shown in Fig. 3. Of the four procedures, 
steps 1, 2 and 4 are the newly added parts not included in 
the previous study of Be. 

Step 1 is to calculate the atomic position from the 
MEM nuclear density distribution. In the rutile case, the 
corresponding atom is the O atom that is located at 
(x, x, 0). In order to determine the atomic position purely 
from the nuclear densities, the atomic position has to be 
defined from the nuclear density distribution. In this 
work, the atomic position, r c, is defined as the position 
for which the first-order moment of nuclear density 
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becomes zero. The first-order moment is given as 

L(rc) = fUPMEg(rc + O-lu)duxduyduz, (1) 

where u is an atomic displacement defined in the 
principal-axis system, Q is a transformation matrix that 
converts from the crystal axes to the principal axes and 
PMEM is the MEM nuclear density distribution. In the 
calculation, the integration in (1) is substituted into the 
summation over the finite sphere region with radius R 0 
since PMEM is derived as a discrete form. 

L(rc) = ~ UPMEM(rc d- Q-lu).  (2) 
u 2 < R0 2 

Equation (2) is the step function with 1 pixel resolution. 
It is found that even 128 × 128 x 128 pixels is not fine 
enough to determine the atomic position with good 
accuracy. Therefore, PMEM is interpolated by the 
following equation (Sakurai, 1972). 

PMEM(r) = PMEM(Xm + P, Ym + q, Zr, + r) 

: (1 -- q){(1 -- r)[(1 -- p)PMEM(Xm, ym, gm) 

-b PPMEM(Xm+I, Ym, Zm)] 

+ r[(1 - p)PUEU(Xm, Ym, Zm+O 

"1- PRMEM(Xm+I, Ym, Zm+l)]} 

n t- q{(1 --  r ) [ (1  - - p ) p M F M ( X m ,  Ym+l, Zm) 

-q- PPMEM(Xm+I, Ym+l, Zm)] 

n t- r[(1 - p)PMEM(Xm, Ym+I, Zm+l) 

-a t- PPMEM(Xm+I, Ym+I, Zm+I)]}, (3) 
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(b) 
Fig. 2. The MEM nuclear density maps of futile analysed with 

128 x 128 x 128 pixels. (a) and (b) are (110) and (002) planes, 
respectively. The contour lines are on a logarithmic scale at 0.01 x 5 n 
(n -= 0, 1 ..... 8) (NA-3). 

where x m, Ym and z m are integer values that show the mth 
pixel's values and p, q and r are half-integer values that 
show the interpixel positions. 

Step 2 is to build the OPP model function by 
estimating the effective potential order. For this purpose, 
the higher-order moments are calculated from the MEM 
nuclear-density distribution. The higher-order moments 
are given as 

/ 
_ _  U n t U t U <Un)MEM- ~ PMEM( ) / ~ ' - ~  PMEM( ) '  (4 )  

.2 _< R~ ,.2 _< R; 

where p~EM(U) is defined as PMEM(rc n t- Q- lu)  with r C 
fixed at the atomic position that is determined in step 1. 
Equation (4) is also approximated by the summation as in 
(2) and PMEM is also interpolated by (3). The higher- 
order moments are strongly related to the anharmon- 
icities and thus the significant terms among the obtained 

step I ~f 
I To evaluate the atomic position 

step 2 

step 3 

To build the OPP model by 
referring to the higher moments 

To determine the OPP parameters 
by least-sqares refinement 

step 4 

No 

To compare with 
the MEM higher moments 

Fig. 3. Flow chart of  the OPP parameter analysis. 
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higher-order moments are employed for the potential 
analysis. 

Step 3 is to determine the potential parameters by 
least-squares refinement of the MEM nuclear density 
distribution. The TSF is assumed to be the Boltzman 
distribution function by using the OPP model with the 
classical high-temperature approximation and given as 

popp(U) - A e x p ( - V o p p ( u ) / k s T  ), (5) 

where k s is the Boltzman constant, T the absolute 
temperature, Vop P the effective one-particle potential, 
which is defined up to the effective potential order 
estimated in step 2. A is the normalized factor and is 
given as the analytical form 

A -- b/ / f  e x p ( - V o p p ( u ) / k s T  ) dux duy duz, (6) 

where b is the scattering length of the corresponding 
atom. On the other hand, A is the peak maximum of the 
nuclear density at u = 0. In the present study, A is treated 
as a least-squares parameter since it may not always 
agree with the peak maximum of the nuclear density 
because of discreteness of the MEM nuclear-density 
distribution. The convergence of the least-squares 

OPP 

I Calculated 
from (5) 

T PP 

I ' nl  

Observed 
Structure 

Factors 

FoBs 

I MEM 
Analysis 

PMEM 

D s ty I 
Least Squares Refinement 

II 

Potential Parameters 

Fig. 4. Schematic diagram of the least-squares refinement. 

refinement is evaluated by the following equations: 

w = ~ o,(u)[PhEM(U)- Popp(U)] 2, 
u 2 < R 2 

where 

(7) 

O ~ U ) -  1//)~IEM(U ). (8) 

Equation (8) is the weighting factor of (7). This term is 
introduced to give an overall fitting from peak maximum 
to background level. Without this term, a good fit is 
obtained only for peak-maximum regions. A schematic 
diagram of step 3 is shown in Fig. 4. 

Finally, step 4 is to compare the OPP higher-order 
moments with the MEM ones. The OPP higher-order 
moments are calculated from the TSF obtained by the 
least-squares refinement in step 3 and given as 

(un)opp= ~ unpopp(U)/~-~ pOpp(U). (9) 
.2 < Co2 u2 _< Ro2 

Higher-order moments of the MEM were calculated in 
step 2. If a satisfactory agreement between the higher- 
order moments calculated from the MEM and those from 
the OPP is not obtained, the procedure may be repeated 
by adding higher-order anharmonic terms that satisfy 
the point-group symmetry of the corresponding atom. 
Otherwise, the present analysis of anharmonic thermal 
vibrations will be ended. 

4. The OPP analysis of rutile 

In the rutile case, individual nuclear density distributions 
of Ti and O atoms are obtained separately because the 
MEM equation deals with the nuclear density distribution 
of atoms with positive and negative scattering amplitudes 
independently (Sakata, Uno, Takata & Howard, 1993). 
This gives an additional advantage in the present 
analysis, since the influence of tail densities of a 
neighbouring atom can be avoided completely. In the 
case of having only positive or negative scattering 
amplitudes, a completely separate distribution cannot be 
obtained. It is considered that the influence of neighbour- 
ing atoms is sufficiently small unless the boundary with 
neighbouring atoms is obscure owing to ionic conduc- 
tivity or some other reason. 

The atomic sites of Ti and O atoms in rutile have 
point-group symmetry mmm and mm2, respectively. The 
principal axes ux, Uy and u z are taken to be parallel to the 
(110), (110) and (001) crystal axes. Then, the transfor- 
mation matrix, Q, which converts from the crystal axes to 
the principal axes, becomes 

a cos zr/4 - a  sin ~r/4 0'~ 
Q - a sin zr/4 a cos zr/4 0 ) . 

0 0 c 
(10) 
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The principal axes of each atom are also indicated in Fig. 
1. For the first- and higher-order-moments calculations 
with (2), (4) and (9), the summation is performed within 
a sphere of radius 0.6,~,. The difference between the 
calculated moments within 0.5 and 0.6,~, spheres is 
negligible. The sphere of radius R 0 = 0.6 A is shown as a 
dotted circle in Fig. 5(a). 

In step 1, the atomic position of the O atom is 
determined from (2). Since the O atom is located at 
r~ = (x~, x~, 0) in crystal coordinates, L(rc) is calculated 
along the (110) axis as shown in Fig. 5(a). The values of 
L(r~) plotted against x¢ are shown in Fig. 5(b). The solid 
and dotted lines correspond to the calculated values with 
and without interpolation [(3)], respectively. Fig. 5(b) 
explains the necessity for the interpolation in the 
calculation of moments. The determined x~ is 0.30477, 
which shows excellent agreement with the previous 
result of Rietveld analysis based on the harmonic model, 
0.30478(6) (Howard, Sabine & Dickson, 1991). This 
suggests that no significant correlation between the 
atomic coordinate of the O atom and the potential 
parameters occurs in the rutile case. 

In step 2, the OPP model function is built by using the 
higher-order moments calculated with (4). For both Ti 
and O atoms, all values up to sixth order are given in 
Table 1. None of the sixth-order values is significant. In 

"",. ,  .- . . . . .  .. 

,:", "',, R o = o.6A 

.) 

Calculating ~ , .  
direction .... 

Ti 

(a) 

OlO~ .... J--, ' ! ' ' - 
" r ' , ,x  i Wi!hout Interpolation 

0.05 --i - 

L 0.00 

-0.05 t 0 

-O-lOF , , \ i  , , 

0.29 0.295 0.3 0.305 0.31 0.315 0.32 
x¢ ( f rac t iona l  coord ina te  ) 

(b) 

Fig. 5. (a) Scheme of calculating the first-order moment for the O atom. 
(b) The first-order moment plotted against x c. The solid and dotted 
lines correspond to the calculated values with and without the 
interpolation [(3)], respectively. 

Table 1. The MEM higher-order moments up to sixth 
order calculated by the nuclear-density distribution of 
rutile in the MEM columns and the OPP higher-order 
moments calculated by the TSF of the fourth-order 

analysis in the OPP columns 

Units are ~a x 10 -3. 

Ti atom O atom 

Moments MEM OPP MEM OPP 

(~) 6.81 6.80 3.57 3.55 
(~) 6.20 6.21 7.58 7.56 
(~) 6.11 6.11 3.82 3.82 
(u~) -0.016 -0.018 
(~Ux) 0.095 0.092 
(~ux) 0.014 0.014 
(~) 0.151 0.151 0.040 0.040 
(~) 0.122 0.122 0.189 0.185 
(~) 0.118 0.117 0.045 0.045 
(u~u~y) 0.044 0.044 0.028 0.028 
(~u~z) 0.041 0.040 0.029 0.029 
(u2~) 0.043 0.043 0.014 0.014 
(~) -0.0007 
<~u~> 0.0o46 
(u~u~> 0.0003 
(~u~> 0.0o09 
<u~u2z) 0.0001 
m~,u~,u2 0.00o5 
(~) 0.0062 0.0008 
(~) 0.0043 0.0085 
<~> 0.004o 0.0009 
<~,,~> 0.0OLO 0.ooo3 
(u4~) 0.OOI0 0.0002 
<~> 0.0009 0.0008 
(u~u~) 0.0009 0.0007 
( u ~ )  0.0009 0.0002 
<~> 0.0o09 0.0004 
(u~> 0.00Ol 0.00Ol 

the present work, the OPP model including up to fourth- 
order anharmonicities is employed. Hence, the OPP 
model functions are written for the Ti atom as 

2 0/22U2 2 Vop P "-- OlllU x "~ + 0133U z 
+ + 4 + y . . u  4 

2 2 2 2 2 2 (11) 
+ YllEEUxUy ~ Y2233UyUz + Y3311UzUx 

and for the O atom as 

2 
Vopp =  llUx 2 + + a33Uz 

+ + #221u u. +  33,U Ux 

+ 4 + ×2  2u 4 + ×3333u 4 
2 2  2 2  2 

-n L Yl122UxUy "~ Ya233UyUz "n L Y3311UzU~x, (12) 

where ct i, fli and Yi are the second-, third- and fourth- 
order potential parameters. These potentials include all 
possible terms up to fourth order which satisfy the point- 
group symmetry of the corresponding atoms (Tanaka & 
Marumo, 1983). 

In step 3, the least-squares refinement of the MEM 
nuclear density distribution is performed with the above 
OPP model. In this analysis, the reliability factors of the 
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Table 2. The determined OPP parameters 

The results analysed by the OPP model up to second, third and fourth 
order are listed in each column. 

Units are eV ,~,-". 

Ti atom O atom 

Second Fourth Second Third Fourth 

a n 1.956 (1) 2.1399 (3) 3.983 (5) 3.914 (2) 3.890 (2) 
az2 2.143 (1) 2.3386 (4) 1.889 (2) 1.8149 (9) 1.855 (1) 
ot33 2.136 (1) 2.3243 (4) 3.436 (5) 3.422 (2) 3.557 (2) 
/3 m 3.67 (1) 3.37 (1) 
flz2t -5.84 (1) -5.68 (1) 
fl33~ -2.34 (3) -2.25 (2) 
Villi --3.583 (3) --2.09 (5) 
Y2222 --3.477 (6) --1.46 (1) 
Y3333 --3.187 (7) --5.77 (8) 
}'nZ2 --4.47 (2) 7.2 (1) 
Y2233 -8.53 (2) -1.5 (1) 
Y33n -4.75 (2) 0.7 (3) 

R(p) (%) 3.98 0.73 8.83 4.34 3.83 
wR(p) (%) 6.43 1.31 15.74 5.94 5.08 

refinement are given as 

R(p) -" u 2E< R20 I P~IEM ( u )  - -  POPP (U)I 'u/2R< E2_  I P~clEM (U) [ 

(13) 

and 

f 
wg(p)  - -  ~ ~ O ) ( U ) [ P M E M ( U ) -  Popp(U)]  2 

/ u 2 _< R 2 

[ 1} x ~ W(U)P~EM(U) 2 , (14) 
U 2 < R02 

where wR(p) is a weighted reliability factor and a newly 
added criterion. Since the OPP model is based on the 
Einstein oscillator theory, the least-squares ref'mement is 
carded out on each atom. The potential parameters 
obtained for each atom are listed in Table 2. For the Ti 
atom, nine OPP parameters, of which three are harmonic 
and six are fourth-order anharmonic, are determined with 
R = 0.73 and wR = 1.31%. For the O atom, twelve OPP 
parameters, of which three are harmonic, three are third- 
and six are fourth-order anharmonic, are determined with 
R = 3.83 and wR = 5.08%. The results analysed by the 
OPP model up to second- and third-order terms are also 
listed in Table 2 for comparison. It is found that the 
fitting becomes better as the effective order of the OPP is 
increased for both Ti and O atoms. In particular, the 
drastic improvements between the second- and third- 
order analysis for the O atom and between the second- 
and fourth-order analysis for the Ti atom are recognized. 
These results show that anharmonic terms are needed to 
represent the precise thermal vibration of rutile. It is also 
understood in Table 2 that lower-order parameters are 
almost unchanged when higher-order terms are added in 
the OPP. This means that the correlation between the 

anharmonic terms is sufficiently small. Consequently, the 
anharmonic terms can be regarded as small perturbations. 

The TSF map calculated from (5) is shown in Fig. 6 
for (110) and (002) planes. Each map is calculated by the 
OPP model up to second, third and fourth orders. 
Comparison of these maps with the MEM density maps 
shown in Fig. 2 indicates that the TSF maps up to fourth- 
order parameters show the best fitting with the MEM 
density maps. For the O atom, the density distribution 
changed drastically between the second- and third-order 
analyses, as is expected from the reliability factors. The 
skewness of the O atom is very well reconstructed by the 
third-order anharmonicities. For the Ti atom, there is 
slight anisotropy on the XY and XZ planes in the MEM 
maps. This anisotropy is well constructed by the fourth- 
order analysis. It can be said that the anisotropy of the Ti 
atom is mainly due to the fourth-order anharmonicities. 

In step 4, the OPP higher-order moments are 
calculated from (9) by using the obtained parameters of 
the fourth-order analysis. The results are listed in Table 1 
together with the MEM higher-order moments. It is 
judged from the table that the agreements are satisfied 
over all the orders. Then no further analysis is carded 
out. It is worthwhile to compare the obtained OPP 
second-order moments with the previous results of 
Rietveld analysis (Howard, Sabine & Dickson, 1991), 
which are listed in Table 3. For the O atom, both the 
second-order moment of the OPP and the thermal 
parameter of the Rietveld analysis are almost equal 
within the standard deviations of the Rietveld analysis. 
For the Ti atoms, the discrepancy is larger than in the O- 
atom case. This might be due to the correlation between 
the harmonic and the fourth-order anharmonic terms 
because the Ti-atom analysis has slightly bigger correla- 
tion-matrix elements than the O-atom analysis. 

5. The reliability against the observed structure 
factors 

In the least-squares analysis, the estimated standard 
deviation (e.s.d.) of each parameter is defined as 
inversely proportional to the difference between the 
number of data and number of parameters. In the present 
analysis, the number of data that satisfy u2_< R02 is 
30 399 pixels and the number of parameters is at most 12. 
This causes the unrealistic small e.s.d.'s. This is because 
the potential parameters are not refined directly with the 
experimentally observed values. At this stage, a realistic 
measure of e.s.d, against the observed data has not been 
performed. In order to examine how accurately the 
potential parameters are determined with respect to the 
experimental observables, the following reliability fac- 
tors are calculated. 

R(SF) = [ ~ [FoBs(h ) - FoPa(h)l 

+ ~ IGoBs(i) - Gopp(i)l] 

x [y'~, IFoBs(h)l + )--], IGoBs(i)I] -1 (15) 
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and 

w R ( S F )  - -  ({  ~--~[FoBs(h ) - F o p p ( h ) 1 2 / o ' ( h )  2 

-at- ~-'~[GoBs(/) - -  G o p p ( / ) ]  2/0"(i)  2 } 

x [ 

+ ~ Goss(i)21o.(i)2]-l)1/2, (16) 

where Foss(h) and Goss(i) are the observed structure 
factors of individual and overlapped reflections, a(h) and 
a(i) are their standard deviations and Fopp(h ) is 
calculated from 

F o p p ( h ) - - ~  ~ popp(u)exp[2m'h(r¢+Q-lu)]. 
r c u E < R  2 

(17) 

The structure factor for the overlapped reflections, G(i), 
is introduced to give a combined structure factor for the 
overlapped peaks for the powder diffraction experiment 
(Sakata, Mori, Kumazawa, Takata & Toraya, 1990). 
These reliability factors are expressed as the agreement 

Table 3. The second-order moments calculated by the 
thermal vibration parameters Ull, U22, U12 and U33 of 
the Rietveld analysis (Howard, Sabine & Dickson, 1991) 

Units are ,&2 x 10 -3. 

Ti atom O atom 

(~) = U H + Uj2 6.4 (4) 3.2 (2) 
(u~) = U H - Ui2 7.2 (4) 7.2 (2) 
(u~) = U33 4.6 (5) 3.5 (2) 

between the experimentally observed data, FoBs(h ) and 
GoBs(i), and the structure factors, Fol, l,(h ) and Gopp(0, 
calculated from the refined potential parameters. 

The results are listed in Table 4. When the OPP model 
is effective in the refinement, the reliability factors 
become smaller. This tendency is quite similar to the case 
of the reliability factors of the least-squares refinement 
calculated by (13) and (14) in real space. Therefore, it is 
confirmed that the fourth-order analysis also shows the 
best-fitting result among the present anharmonic analyses 
with respect to the observed structure factors. The 
reliability factors against the FMEM(h ), which is 
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Fig. 6. The TSF maps calculated by the obtained 
OPP model. (a), (b) and (c) are (110) planes 
and (d), (e) and ( f )  are (002) planes. (a) and 
(d) are calculated by the OPP function up to 
second-order parameters for both atoms, (b) 
and (e) up to second order for the Ti atom and 
third order for the O atom, (c) and ( f )  up to 
fourth order for both atoms. The contour lines 
are the same as in Fig. 2. 
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Table 4. List of structure factors and reliability factors 
with respect to the observed structure factors, Fons 

The FME M column shows the results of  the MEM analysis. The Fop p 
columns labelled [2], [3] and [4] are the values calculated by the 
second-, third- and fourth-order analyses. 

h k l Foa  s FME M Fopp[2 ] Foiw[3] Fopp[4] 

1 1 0 -4.34 -4.18 -4.21 -4.14 -4.17 
1 0 1 -14.56 -14.40 -14.17 -14.37 -14.40 
2 0 0 -24.21 -24.22 -23.79 -24.10 -24.14 
1 1 1 -20.16 -20.18 -19.71 -20.09 -20.11 
2 1 0 13.60 13.59 13.26 13.58 13.59 
2 2 0 6.55 6.68 6.46 6.60 6.59 
0 0 2 15.77 16.01 15.48 15.95 15.95 
3 1 0 -12.67 -12.69 -12.53 -12.69 -12.71 
2 2 1 -8.66 -8.72 -8.52 -8.74 -8.75 
3 0 1 12.62 12.52 12.13 12.52 12.52 
1 1 2 -4.04 -3.91 -3.94 -3.89 -3.90 
3 1 1 10.47 10.52 10.32 10.41 10.42 
3 2 0 -7.56 -7.40 -7.21 -7.35 -7.35 
2 0 2 -23.30 -23.29 -22.88 -23.17 -23.21 
2 1 2 13.12 13.13 12.82 13.12 13.14 
3 2 1 -20.59 -20.66 -20.35 -20.60 -20.63 
4 1 0 -19.63 -19.69 -19.32 -19.64 -19.65 
2 2 2 6.43 6.59 6.37 6.51 6.50 
3 3 0 9.32 9.35 9.06 9.40 9.40 
4 1 1 -7.78 -7.75 -7.67 -7.70 -7.72 
3 1 2 12.22 -12.14 -11.99 -12.14 -12.17 
4 2 0 -8.88 -8.81 -8.80 -8.69 -8.70 
3 3 1 -5.08 -4.98 -4.98 -4.89 -4.89 
4 2 1 12.93 12.94 12.68 12.95 12.96 
1 1 3 -18.82 -18.87 -18.43 -18.79 -18.80 
4 3 0 10.47 10.48 10.34 10.39 10.40 
3 3 2 9.36 9.15 8.88 9.20 9.20 
5 1 1 2.45 2.89 2.87 3.02 3.03 
3 0 3 11.66 11.93 11.58 11.94 11.93 
5 2 1 9.46 9.47 9.31 9.39 9.39 
3 1 3 10.05 9.85 9.65 9.74 9.75 
4 4 0 -6.53 -6.03 -5.87 -6.06 -6.07 
5 3 0 -22.34 -22.34 -22.04 -22.20 -22.33 
4 4 1 -19.05 -18.84 -18.55 -18.82 -18.84 
6 1 0 16.11 16.01 15.79 15.87 15.88 

h k l GoBs GM EM Gop P [2] Gop p [3] Gop P [4] 

3 2 2 9.74 9.60 9.42 9.57 9.59 
1 0 3 
4 1 2 13.50 13.46 13.22 13.43 13.44 
2 1 3 
4 3 1 14.98 15.03 14.84 14.98 15.00 
5 0 1 
4 2 2 8.47 8.27 8.18 8.23 8.24 
2 2 3 
4 3 2 15.48 15.28 15.06 15.22 15.24 
3 2 3 

R(SF) (%) 0.91 2.25 1.12 1.06 
wR(SIO (%) 0.76 2.12 0.94 0.88 

calculated from PMEM, are also listed in Table 4. Since 
the potential-parameter analysis is performed with PMEM, 
the reliability factors of the fourth-order analysis show 
the best agreement with those of FMEM(h). 

6. Concluding remarks 

The OPP parameters of rutile are accurately determined 
by the least-squares refinement of the MEM nuclear 
density distribution. The obtained OPP model is 
represented by up to fourth-order terms and the TSF 
shows excellent agreement with the MEM nuclear 
density distribution. Moreover, the fourth-order analysis 
also shows the best fit with respect to the observed 
structure factors. The present work is a good demonstra- 
tion that the potential parameters can be precisely 
determined even in a powder diffraction case. This work 
reveals the possibility of a new thermal-vibration 
analysis in crystallography. 
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